

Graphene on Silicon Carbide: a laboratory for basic principles of solid state physics

Heiko B. Weber Chair for Applied Physics Friedrich-Alexander-Universität Erlangen-Nürnberg

Epitaxial graphene on SiC

Physics in the graphene plane

The graphene/SiC system: a Schottky junction

Physics in SiC: Colour centres

Silicon carbide

Abrasive

Jewel

Substrate for GaN LEDs

Silicon carbide as electronic material

SiC polytypes

Silicon carbide for high power electronics

Infineon power Diodes and MOSFETs

Nature materials 8, 203 (2009)

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG NATURWISSENSCHAFTLICHE FAKULTÄT

Thomas Seyller

Two materials on 4H/6H-SiC

350meV

E₌

 $\mathsf{E}_{\mathsf{Dirac}}$

<u>............</u>

Riedl et al. PRL 103, 246804 (2009); F. Speck, ...H.B.Weber, T. Seyller, APL 99, 122106 (2011)

Monolayer graphene (MLG)

K. Emtsev...H.B.Weber, T. Seyller: Nature materials **8**, 203 (2009)

Epitaxial graphene on SiC

Physics in the graphene plane

The graphene/SiC system: a Schottky junction

Physics in SiC: Colour centres

Magnetoresistance of large-area graphene

Graphene monolayer

Graphene bilayer

Nature physics 11,650 (2015) Nature communications (2016) with Krstic

Non-saturating linear magnetoresistance

Simple questions

Question:

Can we understand linear magnetoresistivity ?

Nonsaturating linear Magnetoresistance

... a long-standing enigma in solid state physics ...

Experimentally observed ever since in disordered conductors

- Kapitza 1929
- Potassium PRB 4, 1134 (1971)
- 3D Silver chalcogenides Nature 390, 57 (1997) Nature 417, 421 (2002) PRL 88, 066602 (2002)
- 3D Silicon

Nature 457, 1112 (2009) Scientific reports (2012)

- graphene-like materials Nano letters 10, 3962 (2010)

Europhy. Lett. 94, 57004 (2011) - Topological insulators

APL 102, 012102 (2013) PRL 108, 266806 (2012)

Curve 1—Temperature of Liquid Air. Curve 2—Temperature of Solid CO₂ and Ether. Curve 3—Room Temperature.

Kapitza 1929

 \rightarrow When *E*-fields are (asymptotically) constant,

$$j * B = \text{constant} \rightarrow \rho(B) = \frac{E}{j} \propto B$$

The linear-in-B behavior is built in, however ist prefactor is most often zero.

Further Requirement: Inhomogeneity of off-diagonal term

Kisslinger, Ott, Weber: Phys. Rev. B. 95, 24204 (2017)

 \rightarrow When *E*-fields are (asymptotically) constant,

$$j * B = \text{constant} \rightarrow \rho(B) = \frac{E}{j} \propto B$$

The linear-in-B behavior is built in, however ist prefactor is most often zero.

Further Requirement: Inhomogeneity of off-diagonal term

Kisslinger, Ott, Weber: Phys. Rev. B. 95, 24204 (2017)

Mosaic-like conductors

Robust membranes of bilayer graphene

D. Waldmann,..... A. Hirsch, S. Maier, P. Schmuki, T. Seyller, E. Spiecker, H.B. Weber: ACS nano 7, 4441 (2013)

Dislocation networks in bilayer graphene B. Butz,...H.B. Weber, B. Meyer and E. Spiecker Nature 505, 513 (2014)

(in between)

Bernal stacking

1.0

-0.5 -1.0 -1.5 p_x

Bernal stacking

Eigenvalues (energies) are identical, but eigenfunctions are not! At E = 0, they are even orthogonal!

Electrons can not cross the partial dislocation

Bilayer graphene as mosaic-like conductor

This leads to a distorted quantum mechanical wave pattern:

Mosaic-like conductor

Current pathways distorted:

Linear Magnetoresistance

AB

partial dislocation

AC

S. Shallcross, S. Sharma and H.B. Weber,
Nature communications 8, 342 (2017)
F. Kisslinger, ...E. Spiecker, S. Shallcross, H.B. Weber,
Nature physics 11, 650 (2015)
F. Kisslinger, ...H.B. Weber, Annalen der Physik (2017)

Simple questions

Question: Can we drive a current in a metal with light fields?

Light fields penetrating graphene

Peter Hommelhoff (FAU): waveform control via carrier envelope phase

Electric field of ultrashort light pulses:

Light fields penetrating graphene

Landau-Zener-Stückelberg processes:

Light fields penetrating graphene

Press release: The fastest light-driven current source

T. Higuchi, C. Heide, K. Ullmann, H. B. Weber, P. Hommelhoff Nature 550, 224 (2017)

C. Heide, T. Higuchi, H.B. Weber, P. Hommelhoff Phys. Rev. Lett. 121, 207401 (2018)

Simple questions

Question: Why is light emitted when electrons tunnel from a metal to a metal?

Light emission from tunneling

Very old days of STM: Gimzewski 1988

Tip

Sample

V

Common understanding:

The granular nature of current excites electromagnetic resonances (plasmons), which decay as photons

Electromagnetic generation of light!

Light emission from tunneling

STM at Ag surface, Peters et al., PRL (2017)

New experiment: Graphene nanojunctions (GNJ)

- Flat geometry
- Transparent, spectrally flat
- Extremely stable
- No plasmonic contributions (in the visible)

Confocal microscope

- Custom confocal fluorescence microscope setup
 - Imaging
 - > Spectroscopy
 - Photon statistics
- Spectral range (spectroscopy): 400 nm – 1600 nm
- Temperature range: 3.5 K – 300 K
- Optical excitation
- Electrical excitation

Special thanks to Prof. Stephan Götzinger (FAU)

Wavelength [nm]

Blackbody Spectra

Exponential law over 4 decades Insensitive to work function $\boldsymbol{\Phi}$

Epitaxial graphene on SiC

Physics in the graphene plane

The graphene/SiC system: a Schottky junction

Physics in SiC: Colour centres

Monolithic electronics

Graphene as metal, SiC as semiconductor

Nature materials 10, 357 (2011) Nature communications 3:957 (2012) 2 patents

Simple Questions

Question: How fast can a Schottky Diode respond?

Excellent responsivity (1.1 A/W @ 90 GHz)

One-by-one correspondence between minute and picosecond timescales

Schottky diode as photodetector

Increase of bias voltage

- barrier becomes thinner
- increase of IQE
- saturation shifts to larger P
- PTI more dominant at highe laser power

Numerical simulation based on

- rate equations and
- two-temperature model

Simulation can explain experimental data over entire range explored

Epitaxial graphene on SiC

Physics in the graphene plane

The graphene/SiC system: a Schottky junction

Physics in SiC: Colour centres

Our approach to color centres

In-house creation of defects in SiC: Ion implantation

Graphene windows as electrical interfaces

"Our own" defects: TS with unusual properties APL 113, 112102 (2018)

Simple questions

Question: Can we control the electrostatic environment of a color center?

..... -42.8 MV/n -17.1 MV/n

745.0 745.2 745.4 Wavelength [nm]

20

40

Motivation

Wide-range Electrical tunability of single-photon emission from chromium based color centers in diamond

T Müller et al 2011 New J. Phys. 13075001

also fingerstructures, but in gold

What about the V_{Si} ?

40

-20

0 Electric field [MV/m]

Confocal measurement with applied electric field

Measurement between fingers

Between fingers: Stark effect

General principal of the Stark effect:

External electric field \rightarrow Shifting and splitting of spectral lines

- Interaction with electric field: $H_{tot} = H_0 + V_{int}$ with $V_{int} = -E \cdot \mu$ (μ : dipole moment)
- 1. order Stark effect (Linear Stark effect): splitting or shift

$$U_{dip}^{(1)} = -\boldsymbol{E} \cdot \boldsymbol{\mu}$$

• 2. order Stark effect: dipole is induced $\mu_{ind} \propto E$

$$U_{dip}^{(2)} = -\frac{1}{2} \alpha E^2$$
 (α : polarizability)

- Clear influence of electric field
- Splitting of V'_1 at certain depth
- Also for large # steps still difference between 0V and 240V

steps

Measurement below finger

FAU

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

With the material system Epitaxial Graphene on Silicon Carbide one can advance into so far unattainable physical regimes

Physics in the graphene plane

The graphene/SiC system: a Schottky junction

Physics in SiC: Colour centres

Thank you very much for your attention!

