

**Universität Stuttgart** Institute for Functional Matter and Quantum Technologies



#### **Emergence of collective phases** from interaction of electrons, spin, phonons



#### **Correlated materials: Ultrafast dynamics**



#### **Correlated materials: Spatial heterogeneity**



McElroy et al. PRL 94 197005 (2005) also: Lang et al. Nature 415 412 (2002) also: Parker et al. Nature 468 677 (2010)



Kim et al. PNAS 107 5272 (2010) also: Jones et al. Nano Lett. 10 1574 (2010) also: Dagotto Science 309 257 (2005)

#### Order parameter fluctuations

e.g. gap disorder in SC, m, agnetization, ...

#### **Electronic phase competition**

e.g. metal & insulator, charge order & SC, ...

## **Atomic-scale dynamics of many-body states**

#### **Spatial Probes**

#### **Ultrafast Probes**







## Accessing atomic-scale dynamics in real space



#### How fast can you be?



# Spin dynamics with atomic resolution











#### Spin state spectrum of Fe trimer



Entangled ground state and avoided level crossing at B = 0

$$|\varphi_{+}\rangle = |+2 - 2 + 2\rangle + |-2 + 2 - 2\rangle$$
  
 $|\varphi_{-}\rangle = |+2 - 2 + 2\rangle - |-2 + 2 - 2\rangle$ 

#### Entangled ground state and avoided level crossing at B = 0



$$|\varphi_{+}\rangle = |+2 - 2 + 2\rangle + |-2 + 2 - 2\rangle$$
  
 $|\varphi_{-}\rangle = |+2 - 2 + 2\rangle - |-2 + 2 - 2\rangle$ 

#### **Magnetic spin-environment interaction**



#### **Magnetic spin-environment interaction**



S. Yan, D.J. Choi, J.A.J Burgess, S. Rolf-Pissarczyk, S. Loth Nature Nanotechnol. 10 40 (2015).

#### Remote Spin sensing at the atomic scale



Bistable antiferromagnets: Science 335 196 (2012).

#### Remote Spin sensing at the atomic scale





S. Yan, L. Malavolti, J. Burgess, A. Droghetti, A. Rubio, S. Loth, Science Advances 3 e1603137 (2017)

## Long-range p-d exchange interaction



# Long-range p-d exchange through Cu<sub>2</sub>N network



S. Yan, L. Malavolti, J. Burgess, A. Droghetti, A. Rubio, S. Loth, Science Advances 3 e1603137 (2017)

#### **Remote sensing of correlated spin states**



Antiferromagnetic correlation:

$$\frac{P_{(0,1)} + P_{(1,0)}}{P_{(0,0)} + P_{(1,1)}} = 1.12 \pm 0.09$$

#### What is the merit of remote spin sensing?



- 100x less invasive than direct measurement
- Approaches non-invasive measurement condition

L. Malavolti et al. *forthcoming* (2019) S. Rolf-Pissarczyk, S. Yan, L. Malavolti, J.A.J. Burgess, G. McMurtrie, S. Loth PRL 119, 217201 (2017).

#### Switching speed as function of spin state composition

2T

1T

00

5

1.5T



Е

Charge density dynamics with femtosecond resolution



•• •• •0 •• ••



#### Ultrafast STM beyond 10 ps speed



Nunes, Freeman Science (1993)

#### Ultrafast STM beyond 10 ps speed





#### THz-induced tunneling





#### The THz – STM principle



 $1 \text{ THz} \cong 300 \ \mu\text{m} \cong 4 \ \text{meV}$ 

 $1\frac{e^-}{\mu s} \cong 160 fA$ 

#### Ultrafast "voltage" source



#### THz – STM Idea



#### Ultrafast "voltage" source



Peak junction voltage in STM

 $10 \text{ mV} |_{40 \text{ MHz}} - 30 \text{ V} |_{0.5 \text{ MHz}}$ 

Collaboration with A. Cavalleri, S. Rajasekaran, A. Cavalieri, I. Grguras (MPI Hamburg)

#### **Ultrafast and ultrasensitive spectroscopy**



## THz coupling to STM tip

Antenna radiation pattern at 0.5 THz





- > THz E-field couples to **tip**
- Field enhancement at tip apex  $\frac{E_z^{tip}}{E_z^{ff}} \approx 1.000 - 10.000$
- Scaling of enhancement
  FEM model: junction capacity
  Experiment: microapex modifications

# **Charge density waves in 2H-NbSe<sub>2</sub>**

NbSe<sub>2</sub> T = 20K,  $T_{CDW}$  = 38 K



CDW gap: 2 meV (ARPES, Borisenko et al. PRL 102 166402, 2009)

#### CDW formation driven by electronphonon interaction.

Fermi surface nesting & Phonon softening

#### NbSe<sub>2</sub>:

Flicker, van Wezel Nat. Comm. 6 7034 (2015) Malliakas, Kanatzidis JACS 135 1719 (2013) Inosov et al. New J. Phys. 10 125027 (2008) Borisenko et al. PRL 102 166402 (2009) etc., also G. Grüner Rev. Mod. Phys. 60 1129 (1988) W. McMillan Phys. Rev B 12 1187 (1975)

#### **Charge-density wave formation**





#### CDW formation driven by electronphonon interaction.

Fermi surface nesting & Phonon softening

**Charge-density wave formation** 



# **Ultrafast imaging of the CDW dynamics**

STM 1 nA / 1mV



**THZ** 40 MHz, fixed delay 300 fs





#### Local Pump Probe Spectrum of NbSe<sub>2</sub>



#### What is the excitation mechanism?



1 nA : Hot electron tunneling  $(0.4\frac{e^{-}}{pulse})$ 

10 pA: Electric field coupling  $(0.008 \frac{e^{-}}{pulse})$ 

# **Dynamic response of CDW after THz excitation**



#### **Collective excitations of a charge density wave**



#### Atomic-scale CDW dynamics at a pinning center





#### **Ultrafast CDW recovery after electronic excitation**



# **Electric-field-driven CDW excitation**



#### **CDW** dynamics at atomic pinning site in NbSe<sub>2</sub>





## **CDW** dynamics at atomic pinning site in NbSe<sub>2</sub>





# **Spatially-resolved CDW dynamics in NbSe**<sub>2</sub>



#### Ultrafast STM by microwave & THz excitation

Collective charge density wave dynamics at defects

Atomic-scale magnetic quantum sensing



#### www.fastatoms.de



dasQ starting grant





Max Hänze Luigi Malavolti Shaoxiang Sheng Gregory McMurtrie Mohamad Abdo Lukas Arnhold Moritz Tritschler Felix Huber Nicolaj Betz Jan Nägele Kurt Lichtenberg Hubert Keller Michael Schäfer Stephan Spieker Sabine Ost Ulrike Mergenthaler



**Alumni:** Prof. Shichao Yan (Shanghai Tech, China)

Prof. Jacob Burgess (U Manitoba, Canada)

Dr. Deung-Jang Choi (Ikerbasque Fellow, Spain)

Steffen Rolf-Pissarczyk (analyst, EWE)